6.5 The Remainder and Factor Theorems

GOAL 1 DIVIDING POLYNOMIALS

When you divide a polynomial \(f(x) \) by a divisor \(d(x) \), you get a quotient polynomial \(q(x) \) and a remainder polynomial \(r(x) \). We write this as \(\frac{f(x)}{d(x)} = q(x) + \frac{r(x)}{d(x)} \). The degree of the remainder must be less than the degree of the divisor.

Example 1 shows how to divide polynomials using a method called polynomial long division.

EXAMPLE 1 Using Polynomial Long Division

Divide \(2x^4 + 3x^3 + 5x - 1 \) by \(x^2 - 2x + 2 \).

SOLUTION

Write division in the same format you would use when dividing numbers. Include a “0” as the coefficient of \(x^2 \).

\[
\begin{array}{c|ccc|c}
 & 2x^2 & 7x & 10 \\
\hline
x^2 - 2x + 2 & 2x^4 & + & 3x^3 & + & 5x - 1 \\
\hline
2x^2 & - & 4x^3 & - & 4x^2 \\
\hline
7x^3 & - & 4x^2 & + & 5x \\
\hline
7x^3 & - & 14x^2 & + & 14x \\
\hline
10x^2 & - & 9x & - & 1 \\
\hline
10x^2 & - & 20x & + & 20 \\
\hline
11x & - & 21 & \rightarrow & \text{remainder}
\end{array}
\]

At each stage, divide the term with the highest power in what's left of the dividend by the first term of the divisor. This gives the next term of the quotient.

Write the result as follows.

\[
\frac{2x^4 + 3x^3 + 5x - 1}{x^2 - 2x + 2} = 2x^2 + 7x + 10 + \frac{11x - 21}{x^2 - 2x + 2}
\]

CHECK You can check the result of a division problem by multiplying the divisor by the quotient and adding the remainder. The result should be the dividend.

\[
\begin{align*}
(2x^2 + 7x + 10)(x^2 - 2x + 2) + 11x - 21 \\
= & \quad 2x^2(x^2 - 2x + 2) + 7x(x^2 - 2x + 2) + 10(x^2 - 2x + 2) + 11x - 21 \\
= & \quad 2x^4 - 4x^3 + 4x^2 + 7x^3 - 14x^2 + 14x + 10x^2 - 20x + 20 + 11x - 21 \\
= & \quad 2x^4 + 3x^3 + 5x - 1 \checkmark
\end{align*}
\]
Investigating Polynomial Division

Let \(f(x) = 3x^3 - 2x^2 + 2x - 5 \).

1. Use long division to divide \(f(x) \) by \(x - 2 \). What is the quotient? What is the remainder?

2. Use synthetic substitution to evaluate \(f(2) \). How is \(f(2) \) related to the remainder? What do you notice about the other constants in the last row of the synthetic substitution?

In the activity you may have discovered that \(f(2) \) gives you the remainder when \(f(x) \) is divided by \(x - 2 \). This result is generalized in the remainder theorem.

Remainder Theorem

If a polynomial \(f(x) \) is divided by \(x - k \), then the remainder is \(r = f(k) \).

You may also have discovered in the activity that synthetic substitution gives the coefficients of the quotient. For this reason, synthetic substitution is sometimes called synthetic division. It can be used to divide a polynomial by an expression of the form \(x - k \).

Example 2 Using Synthetic Division

Divide \(x^3 + 2x^2 - 6x - 9 \) by (a) \(x - 2 \) and (b) \(x + 3 \).

Solution

a. Use synthetic division for \(k = 2 \).

\[
\begin{array}{c|cccc}
2 & 1 & 2 & -6 & -9 \\
 & & 4 & 8 & 4 \\
\hline
1 & 4 & 2 & -5 \\
\end{array}
\]

\[
x^3 + 2x^2 - 6x - 9 \div (x - 2) = x^2 + 4x + 2 + \frac{-5}{x - 2}
\]

b. To find the value of \(k \), rewrite the divisor in the form \(x - k \). Because \(x + 3 = x - (-3) \), \(k = -3 \).

\[
\begin{array}{c|cccc}
-3 & 1 & 2 & -6 & -9 \\
 & & -3 & 3 & 9 \\
\hline
1 & -1 & -3 & 0 \\
\end{array}
\]

\[
x^3 + 2x^2 - 6x - 9 \div (x + 3) = x^2 - x - 3
\]
In part (b) of Example 2, the remainder is 0. Therefore, you can rewrite the result as:

\[x^3 + 2x^2 - 6x - 9 = (x^2 - x - 3)(x + 3) \]

This shows that \(x + 3\) is a factor of the original dividend.

Factor Theorem

A polynomial \(f(x)\) has a factor \(x - k\) if and only if \(f(k) = 0\).

Recall from Chapter 5 that the number \(k\) is called a zero of the function \(f\) because \(f(k) = 0\).

Example 3
Factoring a Polynomial

Factor \(f(x) = 2x^3 + 11x^2 + 18x + 9\) given that \(f(-3) = 0\).

Solution

Because \(f(-3) = 0\), you know that \(x - (-3)\) or \(x + 3\) is a factor of \(f(x)\). Use synthetic division to find the other factors.

\[
\begin{array}{c|cccc}
-3 & 2 & 11 & 18 & 9 \\
 & & -6 & -15 & -9 \\
\hline
 & 2 & 5 & 3 & 0
\end{array}
\]

The result gives the coefficients of the quotient.

\[
2x^3 + 11x^2 + 18x + 9 = (x + 3)(2x^2 + 5x + 3)
\]

\[
= (x + 3)(2x + 3)(x + 1)
\]

Example 4
Finding Zeros of a Polynomial Function

One zero of \(f(x) = x^3 - 2x^2 - 9x + 18\) is \(x = 2\). Find the other zeros of the function.

Solution

To find the zeros of the function, factor \(f(x)\) completely. Because \(f(2) = 0\), you know that \(x - 2\) is a factor of \(f(x)\). Use synthetic division to find the other factors.

\[
\begin{array}{c|cccc}
2 & 1 & -2 & -9 & 18 \\
 & & 2 & 0 & -18 \\
\hline
 & 1 & 0 & -9 & 0
\end{array}
\]

The result gives the coefficients of the quotient.

\[
f(x) = (x - 2)(x^2 - 9)
\]

\[
= (x - 2)(x + 3)(x - 3)
\]

\(\text{Write } f(x) \text{ as a product of two factors.}\)

\(\text{Factor difference of squares.}\)

\(\text{By the factor theorem, the zeros of } f \text{ are } 2, -3, \text{ and } 3.\)
GOAL 2 USING POLYNOMIAL DIVISION IN REAL LIFE

In business and economics, a function that gives the price per unit \(p \) of an item in terms of the number \(x \) of units sold is called a **demand function**.

EXAMPLE 5 Using Polynomial Models

ACCOUNTING You are an accountant for a manufacturer of radios. The demand function for the radios is \(p = 40 - 4x^2 \) where \(x \) is the number of radios produced in millions. It costs the company $15 to make a radio.

a. Write an equation giving profit as a function of the number of radios produced.

b. The company currently produces 1.5 million radios and makes a profit of $24,000,000, but you would like to scale back production. What lesser number of radios could the company produce to yield the same profit?

SOLUTION

a. **VERBAL MODEL**

 Profit = Revenue - Cost

 LABELS

 - Profit = \(P \) (millions of dollars)
 - Price per unit = \(40 - 4x^2 \) (dollars per unit)
 - Number of units = \(x \) (millions of units)
 - Cost per unit = 15 (dollars per unit)

 ALGEBRAIC MODEL

 \[
 P = (40 - 4x^2) \cdot x - 15x
 \]

b. Substitute 24 for \(P \) in the function you wrote in part (a).

 \[
 24 = -4x^3 + 25x
 \]

 \[
 0 = -4x^3 + 25x - 24
 \]

 You know that \(x = 1.5 \) is one solution of the equation. This implies that \(x - 1.5 \) is a factor. So divide to obtain the following:

 \[
 -2(x - 1.5)(2x^2 + 3x - 8) = 0
 \]

 Use the quadratic formula to find that \(x = 1.39 \) is the other positive solution.

 ▶ The company can make the same profit by selling 1,390,000 units.

 ✔ **CHECK** Graph the profit function to confirm that there are two production levels that produce a profit of $24,000,000.
1. State the remainder theorem.

2. Write a polynomial division problem that you would use long division to solve. Then write a polynomial division problem that you would use synthetic division to solve.

3. Write the polynomial divisor, dividend, and quotient represented by the synthetic division shown at the right.

\[
\begin{array}{c|cccc}
-3 & 1 & -2 & -9 & 18 \\
 & -3 & 15 & -18 & \\
\hline
1 & -5 & 6 & 0 & \\
\end{array}
\]

Divide using polynomial long division.

4. \((2x^3 - 7x^2 - 17x - 3) ÷ (2x + 3)\)

5. \((x^3 + 5x^2 - 2) ÷ (x + 4)\)

Divide using synthetic division.

6. \((-3x^3 + 4x - 1) ÷ (x - 1)\)

7. \((-x^3 + 2x^2 - 2x + 3) ÷ (x^2 - 1)\)

8. \((x^3 - 8x + 3) ÷ (x + 3)\)

9. \((x^4 - 16x^2 + x + 4) ÷ (x + 4)\)

10. \((x^2 + 2x + 15) ÷ (x - 3)\)

11. \((x^2 + 7x - 2) ÷ (x - 2)\)

Given one zero of the polynomial function, find the other zeros.

12. \(f(x) = x^3 - 8x^2 + 4x + 48; 4\)

13. \(f(x) = 2x^3 - 14x^2 - 56x - 40; 10\)

14. **BUSINESS** Look back at Example 5. If the company produces 1 million radios, it will make a profit of $21,000,000. Find another number of radios that the company could produce to make the same profit.

Practice and Applications

Using Long Division Divide using polynomial long division.

15. \((x^2 + 7x - 5) ÷ (x - 2)\)

16. \((3x^2 + 11x + 1) ÷ (x - 3)\)

17. \((2x^2 + 3x - 1) ÷ (x + 4)\)

18. \((x^2 - 6x + 4) ÷ (x + 1)\)

19. \((x^2 + 5x - 3) ÷ (x - 10)\)

20. \((x^3 - 3x^2 + x - 8) ÷ (x - 1)\)

21. \((2x^4 + 7) ÷ (x^2 - 1)\)

22. \((x^3 + 8x^2 - 3x + 16) ÷ (x^2 + 5)\)

23. \((6x^2 - x - 7) ÷ (2x + 3)\)

24. \((10x^3 + 27x^2 + 14x + 5) ÷ (x^2 + 2x)\)

25. \((5x^4 + 14x^3 + 9x) ÷ (x^2 + 3x)\)

26. \((2x^4 + 2x^3 - 10x - 9) ÷ (x^3 + x^2 - 5)\)

Using Synthetic Division Divide using synthetic division.

27. \((x^3 - 7x - 6) ÷ (x - 2)\)

28. \((x^3 - 14x + 8) ÷ (x + 4)\)

29. \((4x^2 + 5x - 4) ÷ (x + 1)\)

30. \((x^2 - 4x + 3) ÷ (x - 2)\)

31. \((2x^2 + 7x + 8) ÷ (x - 2)\)

32. \((3x^2 - 10x) ÷ (x - 6)\)

33. \((x^2 + 10) ÷ (x + 4)\)

34. \((x^2 + 3) ÷ (x + 3)\)

35. \((10x^4 + 5x^3 + 4x^2 - 9) ÷ (x + 1)\)

36. \((x^4 - 6x^3 - 40x + 33) ÷ (x - 7)\)

37. \((2x^4 - 6x^3 + x^2 - 3x - 3) ÷ (x - 3)\)

38. \((4x^4 + 5x^3 + 2x^2 - 1) ÷ (x + 1)\)
FACTORED POLYNOMIALS

Factor the polynomial given that \(f(k) = 0 \).

- **39.** \(f(x) = x^3 - 5x^2 - 2x + 24; k = -2 \)
- **40.** \(f(x) = x^3 - 3x^2 - 16x - 12; k = 6 \)
- **41.** \(f(x) = x^3 - 12x^2 + 12x + 80; k = 10 \)
- **42.** \(f(x) = x^3 - 18x^2 + 95x - 126; k = 9 \)
- **43.** \(f(x) = x^3 - x^2 - 21x + 45; k = -5 \)
- **44.** \(f(x) = x^3 - 11x^2 + 14x + 80; k = 8 \)

FINDING ZEROS

Given one zero of the polynomial function, find the other zeros.

- **45.** \(f(x) = 9x^3 + 10x^2 - 17x - 2; k = -2 \)
- **46.** \(f(x) = x^3 + 11x^2 - 150x - 1512; k = -14 \)
- **47.** \(f(x) = 2x^3 + 3x^2 - 39x - 20; k = 4 \)
- **48.** \(f(x) = 5x^3 - 27x^2 - 17x - 6; k = 6 \)
- **49.** \(f(x) = x^3 - 14x^2 + 47x - 18; k = 9 \)
- **50.** \(f(x) = 4x^3 + 9x^2 - 52x + 15; k = -5 \)
- **51.** \(f(x) = x^3 + x^2 + 2x + 24; k = -3 \)
- **52.** \(f(x) = 6x^3 - 19x^2 - 10x + 16; k = 8 \)
- **53.** \(f(x) = x^3 + 2x^2 + 2x + 24; k = -3 \)
- **54.** \(f(x) = 5x^3 - 27x^2 - 17x - 6; k = 6 \)

GEOMETRY CONNECTION

You are given an expression for the volume of the rectangular prism. Find an expression for the missing dimension.

- **55.** \(V = 3x^3 + 8x^2 - 45x - 50 \)
- **56.** \(V = 2x^3 + 17x^2 + 40x + 25 \)

POINTS OF INTERSECTION

Find all points of intersection of the two graphs given that one intersection occurs at \(x = 1 \).

- **57.**
 - \(y = x^3 + x^2 - 5x \)
 - \(y = -x^2 - 4x + 2 \)

- **58.**
 - \(y = x^3 - 6x^2 + 6x + 3 \)
 - \(y = -x^2 + 7x - 2 \)

LOGICAL REASONING

You divide two polynomials and obtain the result \(5x^2 - 13x + 47 - \frac{102}{x + 2} \). What is the dividend? How did you find it?

COMPANY PROFIT

The demand function for a type of camera is given by the model \(p = 100 - 8x^2 \) where \(p \) is measured in dollars per camera and \(x \) is measured in millions of cameras. The production cost is $25 per camera. The production of 2.5 million cameras yielded a profit of $62.5 million. What other number of cameras could the company sell to make the same profit?

FUEL CONSUMPTION

From 1980 to 1991, the total fuel consumption \(T \) (in billions of gallons) by cars in the United States and the average fuel consumption \(A \) (in gallons per car) can be modeled by

\[
T = -0.026x^3 + 0.47x^2 - 2.2x + 72 \quad \text{and} \quad A = -8.4x + 580
\]

where \(x \) is the number of years since 1980. Find a function for the number of cars from 1980 to 1991. About how many cars were there in 1990?
Chapter 6 Polynomials and Polynomial Functions

62. **MOVIES** The amount \(M \) (in millions of dollars) spent at movie theaters from 1989 to 1996 can be modeled by

\[
M = -3.05x^3 + 70.2x^2 - 225x + 5070
\]

where \(x \) is the number of years since 1989. The United States population \(P \) (in millions) from 1989 to 1996 can be modeled by the following function:

\[
P = 2.61x + 247
\]

Find a function for the average annual amount spent per person at movie theaters from 1989 to 1996. On average, about how much did each person spend at movie theaters in 1989? Source: Statistical Abstract of the United States

63. **MULTIPLE CHOICE** What is the result of dividing \(x^3 - 9x + 5 \) by \(x - 3 \)?

- **A** \(x^2 + 3x + 5 \)
- **B** \(x^2 + 3x \)
- **C** \(x^2 + 3x + \frac{5}{x-3} \)
- **D** \(x^2 + 3x - \frac{5}{x-3} \)
- **E** \(x^2 + 3x - 18 + \frac{59}{x-3} \)

64. **MULTIPLE CHOICE** Which of the following is a factor of the polynomial \(2x^3 - 19x^2 - 20x + 100 \)?

- **A** \(x + 10 \)
- **B** \(x + 2 \)
- **C** \(2x - 5 \)
- **D** \(x - 5 \)
- **E** \(2x + 5 \)

65. **COMPARING METHODS** Divide the polynomial \(12x^3 - 8x^2 + 5x + 2 \) by \(2x + 1 \), \(3x + 1 \), and \(4x + 1 \) using long division. Then divide the same polynomial by \(x + \frac{1}{2} \), \(x + \frac{1}{3} \), and \(x + \frac{1}{4} \) using synthetic division. What do you notice about the remainders and the coefficients of the quotients from the two types of division?

Test Preparation

Challenge

Extra Challenge

Mixed Review

CHECKING SOLUTIONS Check whether the given ordered pairs are solutions of the inequality. (Review 2.6)

66. \(x + 7y \leq -8; (6, -2), (2, -3) \)

67. \(2x + 5y \geq 1; (-2, 4), (8, -3) \)

68. \(9x - 4y > 7; (-1, -4), (2, 2) \)

69. \(-3x - 2y \leq -6; (2, 0), (1, 4) \)

QUADRATIC FORMULA Use the quadratic formula to solve the equation. (Review 5.6 for 6.6)

70. \(x^2 - 5x + 3 = 0 \)

71. \(x^2 - 8x + 3 = 0 \)

72. \(x^2 - 10x + 15 = 0 \)

73. \(4x^2 - 7x + 1 = 0 \)

74. \(-6x^2 - 9x + 2 = 0 \)

75. \(5x^2 + x - 2 = 0 \)

76. \(2x^2 + 3x + 5 = 0 \)

77. \(-5x^2 - x - 8 = 0 \)

78. \(3x^2 + 3x + 1 = 0 \)

POLYNOMIAL OPERATIONS Perform the indicated operation. (Review 6.3)

80. \(14x^2 - 15x + 3 + (11x - 7) \)

81. \((8x^3 - 1) - (22x^3 + 2x^2 - x - 5) \)

82. \((x + 5)(x^2 - x + 5) \)

83. **CATERING** You are helping your sister plan her wedding reception. The guests have chosen whether they would like the chicken dish or the vegetarian dish. The caterer charges $24 per chicken dish and $21 per vegetarian dish. After ordering the dinners for the 120 guests, the caterer’s bill comes to $2766. How many guests requested chicken? (Lesson 3.2)