Adding, Subtracting, and Multiplying Polynomials

Adding, Subtracting, and Multiplying

To add or subtract polynomials, add or subtract the coefficients of like terms. You can use a vertical or horizontal format.

EXAMPLE 1 Adding Polynomials Vertically and Horizontally

Add the polynomials.

a. \[3x^3 + 2x^2 - x - 7 + x^3 - 10x^2 + 8 = 4x^3 - 8x^2 - x + 1\]

b. \[(9x^3 - 2x + 1) + (5x^2 + 12x - 4) = 9x^3 + 5x^2 - 2x + 12x + 1 - 4 = 9x^3 + 5x^2 + 10x - 3\]

EXAMPLE 2 Subtracting Polynomials Vertically and Horizontally

Subtract the polynomials.

a. \[\begin{array}{c}
8x^3 - 3x^2 - 2x + 9 \\
- (2x^3 + 6x^2 - x + 1)
\end{array} = \begin{array}{c}
8x^3 - 3x^2 - 2x + 9 \\
-2x^3 - 6x^2 + x - 1
\end{array} \quad \text{Add the opposite.} \]
\[6x^3 - 9x^2 - x + 8\]

b. \[(2x^2 + 3x) - (3x^2 + x - 4) = 2x^2 + 3x - 3x^2 - x + 4 \quad \text{Add the opposite.} \]
\[= -x^2 + 2x + 4\]

EXAMPLE 3 Multiplying Polynomials Vertically

Multiply the polynomials.

\[
\begin{array}{c}
\frac{-x^2 + 2x + 4}{x - 3}
\end{array} \quad \text{Multiply } -x^2 + 2x + 4 \text{ by } -3.
\]
\[
\begin{array}{c}
3x^2 - 6x - 12 \\
-x^3 + 2x^2 + 4x \\
-x^3 + 5x^2 - 2x - 12
\end{array} \quad \text{Multiply } -x^2 + 2x + 4 \text{ by } x.
\]
Combine like terms.
Example 4 Multiplying Polynomials Horizontally

Multiply the polynomials.

\[(x - 3)(3x^2 - 2x - 4) = (x - 3)3x^2 - (x - 3)2x - (x - 3)4\]

\[= 3x^3 - 9x^2 - 2x^2 + 6x - 4x + 12\]

\[= 3x^3 - 11x^2 + 2x + 12\]

Example 5 Multiplying Three Binomials

Multiply the polynomials.

\[(x - 1)(x + 4)(x + 3) = (x^2 + 3x - 4)(x + 3)\]

\[= (x^2 + 3x - 4)x + (x^2 + 3x - 4)3\]

\[= x^3 + 3x^2 - 4x + 3x^2 + 9x - 12\]

\[= x^3 + 6x^2 + 5x - 12\]

Some binomial products occur so frequently that it is worth memorizing their special product patterns. You can verify these products by multiplying.

Special Product Patterns

<table>
<thead>
<tr>
<th>SUM AND DIFFERENCE</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>((a + b)(a - b) = a^2 - b^2)</td>
<td>((x + 3)(x - 3) = x^2 - 9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SQUARE OF A BINOMIAL</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>((a + b)^2 = a^2 + 2ab + b^2)</td>
<td>((y + 4)^2 = y^2 + 8y + 16)</td>
</tr>
<tr>
<td>((a - b)^2 = a^2 - 2ab + b^2)</td>
<td>((3t^2 - 2)^2 = 9t^4 - 12t^2 + 4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CUBE OF A BINOMIAL</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>((a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3)</td>
<td>((x + 1)^3 = x^3 + 3x^2 + 3x + 1)</td>
</tr>
<tr>
<td>((a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3)</td>
<td>((p - 2)^3 = p^3 - 6p^2 + 12p - 8)</td>
</tr>
</tbody>
</table>

Example 6 Using Special Product Patterns

Multiply the polynomials.

a. \((4n - 5)(4n + 5) = (4n)^2 - 5^2\)

\[= 16n^2 - 25\]

b. \((9y - x^2)^2 = (9y)^2 - 2(9y)(x^2) + (x^2)^2\)

\[= 81y^2 - 18xy^2 + x^4\]

c. \((ab + 2)^3 = (ab)^3 + 3(ab)^2(2) + 3(ab)(2)^2 + 2^3\)

\[= a^3b^3 + 6a^2b^2 + 12ab + 8\]
EXAMPLE 7 Subtracting Polynomial Models

FARMING From 1985 through 1995, the gross farm income G and farm expenses E (in billions of dollars) in the United States can be modeled by

$$ G = -0.246t^2 + 7.88t + 159 \quad \text{and} \quad E = 0.174t^2 + 2.54t + 131 $$

where t is the number of years since 1985. Write a model for the net farm income N for these years. \(\text{Source: U.S. Department of Agriculture} \)

Solution

To find a model for the net farm income, subtract the expenses model from the gross income model.

$$ G - E = (-0.246t^2 + 7.88t + 159) - (0.174t^2 + 2.54t + 131) $$

$$ = -0.420t^2 + 5.34t + 28 $$

The net farm income can be modeled by $N = -0.420t^2 + 5.34t + 28$.

The graphs of the models are shown. Although G and E both increase, the net income N eventually decreases because E increases faster than G.

EXAMPLE 8 Multiplying Polynomial Models

From 1982 through 1995, the number of softbound books N (in millions) sold in the United States and the average price per book P (in dollars) can be modeled by

$$ N = 1.36t^2 + 2.53t + 1076 \quad \text{and} \quad P = 0.314t + 3.42 $$

where t is the number of years since 1982. Write a model for the total revenue R received from the sales of softbound books. What was the total revenue from softbound books in 1990? \(\text{Source: Book Industry Study Group, Inc.} \)

Solution

To find a model for R, multiply the models for N and P.

$$ R = (1.36t^2 + 2.53t + 1076)(0.314t + 3.42) $$

$$ R = 0.42704t^3 + 5.44562t^2 + 346.5166t + 3679.92 $$

The total revenue can be modeled by $R = 0.42704t^3 + 5.44562t^2 + 346.5166t + 3679.92$. The graph of the revenue model is shown at the right. By substituting $t = 8$ into the model for R, you can calculate that the revenue was about 7020 million, or 7.02 billion, in 1990.
Guided Practice

1. When you add or subtract polynomials, you add or subtract the coefficients of variables.
2. **Error Analysis** Describe the error in the subtraction shown below.

\[
(x^2 - 3x + 4) - (x^2 + 7x - 2) = x^2 - 3x + 4 - x^2 - 7x + 2 = 4x + 2
\]

3. When you multiply a polynomial of degree 2 by a polynomial of degree 4, what is the degree of the product?

Skill Check

Perform the indicated operation.

4. \((4x^2 + 3) + (3x^2 + 8)\)
5. \((2x^3 - 4x^2 + 5) + (-x^2 - 3x + 1)\)
6. \((x^2 + 7x - 5) - (3x^2 + 1)\)
7. \((x^2 + 1) - (3x^2 - 4x + 3)\)
8. \((x + 2)(2x^2 + 3)\)
9. \((x^2 + 3x + 10)(4x^2 - 2x - 7)\)
10. \((x - 1)(2x + 1)(x + 5)\)
11. \((-3x + 1)^3\)
12. **Geometry > Connection** Write a polynomial model in standard form for the volume of the rectangular prism shown at the right.

Practice and Applications

Adding and Subtracting Polynomials Find the sum or difference.

13. \((8x^2 + 1) + (3x^2 - 2)\)
14. \((3x^3 + 10x + 5) - (x^3 - 4x + 6)\)
15. \((x^2 - 6x + 5) - (x^2 + x - 2)\)
16. \((16 - 13x) + (10x - 11)\)
17. \((7x^3 - 1) - (15x^3 + 4x^2 - x + 3)\)
18. \(8x + (14x + 3 - 41x^2 + x^3)\)
19. \((4x^2 - 11x + 10) + (5x - 31)\)
20. \((9x^3 - 4 + 2x + 8x) - (7x^3 - 3x + 7)\)
21. \((-3x^3 + x - 11) - (4x^3 + x^2 - x)\)
22. \((6x^2 - 19x + 5) - (19x^2 - 4x + 9)\)
23. \((10x^3 - 4x^2 + 3x) - (x^3 - x^2 + 1)\)
24. \((50x - 3) + (8x^3 + 7x^2 + x + 4)\)
25. \((10x - 3 + 7x^2) + (x^3 - 2x + 17)\)
26. \((3x^3 - 5x^4 - 10x + 1) + (17x^4 - x^3)\)

Multiplying Polynomials Find the product of the polynomials.

27. \(x(x^2 + 6x - 7)\)
28. \(10x^2(x - 5)\)
29. \(-4x(x^2 - 8x + 3)\)
30. \(5x(3x^2 - x + 3)\)
31. \((x - 4)(x - 7)\)
32. \((x + 9)(x - 2)\)
33. \((x + 3)(x^2 - 4x + 9)\)
34. \((x + 8)(x^2 - 7x - 3)\)
35. \((2x + 5)(3x^3 - x^2 + x)\)
36. \((6x + 2)(2x^2 - 6x + 1)\)
37. \((x + 11)(x^2 - 5x + 9)\)
38. \((4x^2 - 1)(x^2 - 6x + 9)\)
39. \((x - 1)(x^3 + 2x^2 + 2)\)
40. \((x + 1)(5x^3 - x^2 + x - 4)\)
41. \((3x^2 - 2)(x^2 + 4x + 3)\)
42. \((-x^3 - 2)(x^2 + 3x - 3)\)
43. \((x^2 + x + 4)(2x^2 - x + 1)\)
44. \((x^2 - x - 3)(x^2 + 4x + 2)\)
MULTIPLYING THREE BINOMIALS Find the product of the binomials.

45. \((x + 9)(x - 2)(x - 7)\)
46. \((x + 3)(x - 4)(x - 5)\)

47. \((x + 5)(x + 7)(-x + 1)\)
48. \((2x - 3)(x + 7)(x + 6)\)

49. \((x - 9)(x - 2)(3x + 2)\)
50. \((x - 1)(-2x - 5)(x - 8)\)

51. \((2x + 1)(3x + 1)(x + 4)\)
52. \((4x - 1)(2x - 1)(3x - 2)\)

SPECIAL PRODUCTS Find the product.

53. \((x + 7)(x - 7)\)
54. \((x + 4)^2\)
55. \((4x - 3)^3\)

56. \((10x + 3)(10x - 3)\)
57. \((6 - x^2)^2\)
58. \((2y + 5x)^2\)

59. \((3x + 7)^3\)
60. \((7y - x)^2\)
61. \((2x + 3y)^3\)

GEOMETRY CONNECTION Write the volume of the figure as a polynomial in standard form.

62. \(V = \pi r^2h\)

63. \(V = lwh\)

64. **Motor Vehicle Sales** For 1983 through 1996, the number of cars \(C\) (in thousands) and the number of trucks and buses \(T\) (in thousands) sold that were manufactured in the United States can be modeled by

\[
C = -1.63t^4 + 49.5t^3 - 476t^2 + 1370t + 6705
\]

\[
T = -1.052t^4 + 31.6t^3 - 296t^2 + 1097t + 2290
\]

where \(t\) is the number of years since 1983. Find a model that represents the total number of vehicles sold that were manufactured in the United States. How many vehicles were sold in 1990?

65. **Social Studies Connection** For 1980 through 1996, the population \(P\) (in thousands) of the United States and the number of people \(S\) (in thousands) age 85 and over can be modeled by

\[
P = -0.804t^4 + 26.9t^3 - 262t^2 + 3010t + 227,000
\]

\[
S = 0.0206t^4 - 0.670t^3 + 6.42t^2 + 213t + 7740
\]

where \(t\) is the number of years since 1980. Find a model that represents the number of people in the United States under the age of 85. How many people were under the age of 85 in 1995?

DATA UPDATE of U.S. Bureau of the Census data at www.mcdougallittell.com

66. **Bicycling** The equation \(P = 0.00267sF\) gives the power \(P\) (in horsepower) needed to keep a certain bicycle moving at speed \(s\) (in miles per hour), where \(F\) is the force of road and air resistance (in pounds). On level ground this force is given by \(F = 0.0116r^2 + 0.789\). Write a polynomial function (in terms of \(s\) only) for the power needed to keep the bicycle moving at speed \(s\) on level ground. How much power does a cyclist need to exert to keep the bicycle moving at 10 miles per hour?
67. **EDUCATION** For 1980 through 1995, the number of degrees D (in thousands) earned by people in the United States and the percent of degrees P earned by women can be modeled by

$$D = -0.096t^4 + 3.9t^3 - 27t^2 + 91t + 1700$$
$$P = 0.43t + 49$$

where t is the number of years since 1980. Find a model that represents the number of degrees W (in thousands) earned by women from 1980 to 1995. How many degrees were earned by women in 1991? Source: U.S. Bureau of the Census

68. **PUBLISHING** From 1985 through 1993, the number of hardback books N (in millions) sold in the United States and the average price per book P (in dollars) can be modeled by

$$N = -0.27t^3 + 3.9t^2 + 7.9t + 650$$
$$P = 0.67t + 9.4$$

where t is the number of years since 1985. Write a model that represents the total revenue R (in millions of dollars) received from the sales of hardback books. What was the revenue in 1991?

69. **PERSONAL FINANCE** Suppose two brothers each make three deposits in accounts earning the same annual interest rate r (expressed as a decimal).

Mark’s account is worth $6000(1 + r)^3 + 8000(1 + r)^2 + 9000(1 + r)$ on January 1, 2000. Find the value of Tom’s account on January 1, 2000. Then find the total value of the two accounts on January 1, 2000. Write the total value as a polynomial in standard form.

70. **MULTIPLE CHOICE** What is the sum of $2x^4 + 5x^3 - 8x^2 - x + 10$ and $8x^4 - 4x^3 + x^2 - x + 2$?

A. $10x^4 + x^3 - 9x^2 + 12$
B. $10x^4 + x^3 - 9x^2 - 2x + 12$
C. $10x^4 + x^3 - 7x^2 - 2x + 12$
D. $10x^4 + 9x^3 - 7x^2 - 2x + 12$

71. **MULTIPLE CHOICE** $(3x - 8)^3 = ?$

A. $27x^3 - 216x^2 + 576x - 512$
B. $27x^3 - 216x^2 + 576x + 512$
C. $27x^3 - 72x^2 + 576x - 512$
D. $27x^3 - 216x^2 + 72x - 512$

72. **FINDING A PATTERN** Look at the following polynomials and their factorizations.

$$x^2 - 1 = (x - 1)(x + 1)$$
$$x^3 - 1 = (x - 1)(x^2 + x + 1)$$
$$x^4 - 1 = (x - 1)(x^3 + x^2 + x + 1)$$

a. Factor $x^5 - 1$ and $x^6 - 1$. Check your answers by multiplying.

b. In general, how can $x^n - 1$ be factored? Show that this factorization works by multiplying the factors.
MIXED REVIEW

SOLVING QUADRATIC EQUATIONS Solve the equation. (Review 5.2 for 6.4)
73. \(4x^2 - 36 = 0\) 74. \(x^2 + 3x - 40 = 0\) 75. \(x^2 + 16x + 64 = 0\)
76. \(x^2 - x - 56 = 0\) 77. \(2x^2 - 7x - 15 = 0\) 78. \(6x^2 + 10x - 4 = 0\)

WRITING QUADRATIC FUNCTIONS Write a quadratic function in standard form whose graph passes through the given points. (Review 5.8)
79. \((-4, 0), (2, 0), (1, 6)\) 80. \((10, 0), (1, 0), (4, 3)\)
81. \((-6, 0), (6, 0), (-3, -9)\) 82. \((-3, 0), (5, 0), (-2, 7)\)

SIMPLIFYING ALGEBRAIC EXPRESSIONS Simplify the expression. Tell which properties of exponents you used. (Review 6.1)
83. \(x^5 \cdot \frac{1}{x^2}\) 84. \(\frac{x^4y^5}{xy^3}\) 85. \(-5^{-2}y^0\)
86. \((4x^{-3})^4 \cdot \left(\frac{x^6}{2}\right)^2\) 87. \(\frac{3x^5y^6}{6xy^3}\) 88. \(\frac{6x^3y^2}{30x^2y^{-1}}\)

Quiz 1

Evaluate the expression. (Lesson 6.1)
1. \(7^0 \cdot 5^{-3}\) 2. \(\left(\frac{4}{9}\right)^{-2}\) 3. \(\left(\frac{5}{3^2}\right)^2\)
4. \(3^2 \cdot (3^2 \cdot 2^4)^{-1}\) 5. \((8^2 \cdot 8^{-3})^2 \cdot 8^2\) 6. \(\frac{(2^5 \cdot 3^3)^{-1}}{2^{-2} \cdot 3^2}\)

Simplify the expression. (Lesson 6.1)
7. \((-5)^{-2}y^0\) 8. \((3x^3y^6)^{-2}\) 9. \((x^3y^{-5})(x^2y)^2\)
10. \((x^2y^{-3})(xy^2)\) 11. \(\left(\frac{2x}{y^2}\right)^{-3}\) 12. \(\frac{x^8y^2}{x^{-1}y^5}\)

Graph the polynomial function. (Lesson 6.2)
13. \(f(x) = x^4 - 2\) 14. \(f(x) = -2x^5 + 3\) 15. \(f(x) = 3x^3 + 5x - 2\)
16. \(f(x) = -x^3 + x^2 - 2\) 17. \(f(x) = x^3 - 2x\) 18. \(f(x) = -x^4 - 3x + 6\)

Perform the indicated operation. (Lesson 6.3)
19. \((7x^3 + 8x - 11) + (3x^2 - x + 8)\) 20. \((-2x^2 + 4x) + (5x^2 - x - 11)\)
21. \((-5x^2 + 12x - 9) - (-7x^2 - 6x - 7)\) 22. \((3x^2 + 4x - 1) - (-x^3 + 2x + 5)\)
23. \((x + 5)(4x^2 - x - 1)\) 24. \((x - 3)(x + 2)(2x + 5)\)
25. \((x - 6)^3\) 26. \((2x^2 + 3)^2\)
27. **ASTRONOMY** Suppose NASA launches a spacecraft that can travel at a speed of 25,000 miles per hour in space. How long would it take the spacecraft to reach Jupiter if Jupiter is about 495,000,000 miles away? Use scientific notation to get your answer. (Lesson 6.1)