Solving Linear Equations

GOAL 1 **SOLVING A LINEAR EQUATION**

An equation is a statement in which two expressions are equal. A linear equation in one variable is an equation that can be written in the form \(ax = b \) where \(a \) and \(b \) are constants and \(a \neq 0 \). A number is a solution of an equation if the statement is true when the number is substituted for the variable.

Two equations are equivalent if they have the same solutions. For instance, the equations \(x - 4 = 1 \) and \(x = 5 \) are equivalent because both have the number 5 as their only solution. The following transformations, or changes, produce equivalent equations and can be used to solve an equation.

EXAMPLE 1 **Solving an Equation with a Variable on One Side**

Solve \(\frac{3}{7}x + 9 = 15 \).

SOLUTION

Your goal is to isolate the variable on one side of the equation.

\[
\frac{3}{7}x + 9 = 15
\]

\[
\frac{3}{7}x = 6
\]

\[
x = \frac{7}{3}(6)
\]

\[
x = 14
\]

The solution is 14.

CHECK Check \(x = 14 \) in the original equation.

\[
\frac{3}{7}(14) + 9 \neq 15
\]

\[
15 = 15 \checkmark
\]

Solution checks.
EXAMPLE 2 **Solving an Equation with a Variable on Both Sides**

Solve $5n + 11 = 7n - 9$.

SOLUTION

$5n + 11 = 7n - 9$ \hspace{1cm} \text{Write original equation.}

$11 = 2n - 9$ \hspace{1cm} \text{Subtract $5n$ from each side.}

$20 = 2n$ \hspace{1cm} \text{Add 9 to each side.}

$10 = n$ \hspace{1cm} \text{Divide each side by 2.}

\Rightarrow The solution is 10. Check this in the original equation.

EXAMPLE 3 **Using the Distributive Property**

Solve $4(3x - 5) = -2(-x + 8) - 6x$.

SOLUTION

$4(3x - 5) = -2(-x + 8) - 6x$ \hspace{1cm} \text{Write original equation.}

$12x - 20 = 2x - 16 - 6x$ \hspace{1cm} \text{Distributive property}

$12x - 20 = -4x - 16$ \hspace{1cm} \text{Combine like terms.}

$16x = 4$ \hspace{1cm} \text{Add $4x$ to each side.}

$x = \frac{1}{4}$ \hspace{1cm} \text{Add 20 to each side.}

$x = \frac{1}{4}$ \hspace{1cm} \text{Divide each side by 16.}

\Rightarrow The solution is $\frac{1}{4}$. Check this in the original equation.

EXAMPLE 4 **Solving an Equation with Fractions**

Solve $\frac{1}{3}x + \frac{1}{4} = x - \frac{1}{6}$.

SOLUTION

$\frac{1}{3}x + \frac{1}{4} = x - \frac{1}{6}$ \hspace{1cm} \text{Write original equation.}

$12\left(\frac{1}{3}x + \frac{1}{4}\right) = 12\left(x - \frac{1}{6}\right)$ \hspace{1cm} \text{Multiply each side by the LCD, 12.}

$4x + 3 = 12x - 2$ \hspace{1cm} \text{Distributive property}

$3 = 8x - 2$ \hspace{1cm} \text{Subtract 4x from each side.}

$5 = 8x$ \hspace{1cm} \text{Add 2 to each side.}

$\frac{5}{8} = x$ \hspace{1cm} \text{Divide each side by 8.}

\Rightarrow The solution is $\frac{5}{8}$. Check this in the original equation.
EXAMPLE 5
Writing and Using a Linear Equation

REAL ESTATE
A real estate broker’s base salary is $18,000. She earns a 4% commission on total sales. How much must she sell to earn $55,000 total?

SOLUTION

<table>
<thead>
<tr>
<th>VERBAL MODEL</th>
<th>Total income = 55,000</th>
<th>Base salary = 18,000</th>
<th>Commission rate = 0.04</th>
<th>Total sales = x</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABELS</td>
<td>(dollars)</td>
<td>(dollars)</td>
<td>(percent in decimal form)</td>
<td>(dollars)</td>
</tr>
</tbody>
</table>

\[55,000 = 18,000 + 0.04x \]
Write linear equation.

\[37,000 = 0.04x \]
Subtract 18,000 from each side.

\[925,000 = x \]
Divide each side by 0.04.

The broker must sell real estate worth a total of $925,000 to earn $55,000.

EXAMPLE 6
Writing and Using a Geometric Formula

You have a 3 inch by 5 inch photo that you want to enlarge, mat, and frame. You want the width of the mat to be 2 inches on all sides. You want the perimeter of the framed photo to be 44 inches. By what percent should you enlarge the photo?

SOLUTION

Let \(x \) be the percent (in decimal form) of enlargement relative to the original photo. So, the dimensions of the enlarged photo (in inches) are \(3x \) by \(5x \). Draw a diagram.

<table>
<thead>
<tr>
<th>VERBAL MODEL</th>
<th>Perimeter = 44</th>
<th>Width = 4 + 3x</th>
<th>Length = 4 + 5x</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABELS</td>
<td>(inches)</td>
<td>(inches)</td>
<td>(inches)</td>
</tr>
</tbody>
</table>

\[44 = 2(4 + 3x) + 2(4 + 5x) \]
Write linear equation.

\[44 = 16 + 16x \]
Distribute and combine like terms.

\[28 = 16x \]
Subtract 16 from each side.

\[1.75 = x \]
Divide each side by 16.

You should enlarge the photo to 175% of its original size.
1. What is an equation?

2. What does it mean for two equations to be equivalent? Give an example of two equivalent equations.

3. How does an equation such as $2(x + 3) = 10$ differ from an identity such as $2(x + 3) = 2x + 6$?

ERROR ANALYSIS Describe the error(s). Then write the correct steps.

4.

 5.

 6. Describe the transformation(s) you would use to solve $2x - 8 = 14$.

Solve the equation.

7. $x + 4 = 9$
8. $4x = 24$
9. $2x - 3 = 7$

10. $0.2x - 8 = 0.6$
11. $\frac{1}{3}x + \frac{1}{2} = \frac{11}{12}$
12. $\frac{3}{4}x - \frac{2}{3} = \frac{5}{6}$

13. $1.5x + 9 = 4.5$
14. $6x - 4 = 2x + 10$
15. $2(x + 2) = 3(x - 8)$

16. **REAL ESTATE SALES** The real estate broker’s base salary from Example 5 has been raised to $21,000 and the commission rate has been increased to 5%. How much real estate does the broker have to sell now to earn $70,000?

DESCRIBING TRANSFORMATIONS Describe the transformation(s) you would use to solve the equation.

17. $x + 5 = -7$
18. $\frac{1}{6}x = 3$
19. $-\frac{4}{7}x = 6$

20. $2x - 9 = 0$
21. $\frac{x}{3} + 2 = 89$
22. $3 = -x - 5$

SOLVING EQUATIONS Solve the equation. Check your solution.

23. $4x + 7 = 27$
24. $7x - 29 = -15$

25. $3a + 13 = 9a - 8$
26. $m - 30 = 6 - 2m$

27. $15n + 9 = 21$
28. $2b + 11 = 15 - 6b$

29. $2(x + 6) = -2(x - 4)$
30. $4(-3x + 1) = -10(x - 4) - 14x$

31. $-(x + 2) - 2x = -2(x + 1)$
32. $-4(3 + x) + 5 = 4(x + 3)$
1.3 Solving Linear Equations

SOLVING EQUATIONS Solve the equation. Check your solution.

33. \(\frac{7}{2}x - 1 = 2x + 5 \)
34. \(\frac{1}{2}x - \frac{5}{3} = \frac{1}{2}x + \frac{19}{4} \)
35. \(\frac{3}{4}(5x - 2) = \frac{11}{4} \)
36. \(-\frac{2}{3}\left(\frac{6}{5}x - \frac{7}{10}\right) = \frac{17}{20} \)
37. \(2.7n + 4.3 = 12.94 \)
38. \(-4.2n - 6.5 = -14.06 \)
39. \(3.1(x + 2) - 1.5x = 5.2(x - 4) \)
40. \(2.5(x - 3) + 1.7x = 10.8(x + 1.5) \)

GEOMETRY CONNECTION Find the dimensions of the figure.

41. Area = 504
42. Perimeter = 23

In Exercises 43 and 44, use the following formula.

\[
\text{degrees Fahrenheit} = \frac{9}{5}(\text{degrees Celsius}) + 32
\]

43. DRY ICE Dry ice is solid carbon dioxide. Dry ice does not melt — it changes directly from a solid to a gas. Dry ice changes to a gas at \(-109.3\)°F. What is this temperature in degrees Celsius?

44. VETERINARY MEDICINE The normal body temperature of a dog is 38.6°C. Your dog’s temperature is 101.1°F. Does your dog have a fever? Explain.

45. CAR REPAIR The bill for the repair of your car was $390. The cost for parts was $215. The cost for labor was $35 per hour. How many hours did the repair work take?

46. SUMMER JOBS You have two summer jobs. In the first job, you work 28 hours per week and earn $7.25 per hour. In the second job, you earn $6.50 per hour and can work as many hours as you want. If you want to earn $255 per week, how many hours must you work at your second job?

47. STOCKBROKER A stockbroker earns a base salary of $40,000 plus 5% of the total value of the stocks, mutual funds, and other investments that the stockbroker sells. Last year, the stockbroker earned $71,750. What was the total value of the investments the stockbroker sold?

48. WORD PROCESSING You are writing a term paper. You want to include a table that has 5 columns and is 360 points wide. (A point is \(\frac{1}{72}\) of an inch.) You want the first column to be 200 points wide and the remaining columns to be equal in width. How wide should each of the remaining columns be?

49. WALKWAY CONSTRUCTION You are building a walkway of uniform width around a 100 foot by 60 foot swimming pool. After completing the walkway, you want to put a fence along the outer edge of the walkway. You have 450 feet of fencing to enclose the walkway. What is the maximum width of the walkway?
50. **MULTI-STEP PROBLEM** You are in charge of constructing a fence around the running track at a high school. The fence is to be built around the track so that there is a uniform gap between the outside edge of the track and the fence.

(a) What is the maximum width of the gap between the track and the fence if no more than 630 meters of fencing is used? (*Hint:* Use the equation for the circumference of a circle, $C = 2\pi r$, to help you.)

(b) You are charging the school $10.50 for each meter of fencing. The school has $5250 in its budget to spend on the fence. How many meters of fencing can you use with this budget?

(c) **CRITICAL THINKING** Explain whether or not it is geometrically reasonable to put up the new fence with the given budget.

SOLVING EQUATIONS

Solve the equation. If there is no solution, write no solution. If the equation is an identity, write all real numbers.

- **51.** $5(x - 4) = 5x + 12$
- **52.** $3(x + 5) = 3x + 15$
- **53.** $7x + 14 - 3x = 4x + 14$
- **54.** $11x - 3 + 2x = 6(x + 4) + 7x$
- **55.** $-2(4 - 3x) + 7 = -2x + 6 + 8x$
- **56.** $5(2 - x) = 3 - 2x + 7 - 3x$

MIXED REVIEW

GEOMETRY CONNECTION

Find the area of the figure. *(Skills Review, p. 914)*

- **57.** Circle with radius 5 inches
- **58.** Square with side 4 inches
- **59.** Circle with radius 7 inches
- **60.** Square with side 9 inches

EVALUATING EXPRESSIONS

Evaluate the expression. *(Review 1.2 for 1.4)*

- **61.** $24 - (9 + 7)$
- **62.** $-16 + 3(8 - 4)$
- **63.** $-3 + 6(1 - 3)^2$
- **64.** $2(3 - 5)^3 + 4(-4 + 7)$
- **65.** $2x + 3$ when $x = 4$
- **66.** $8(x - 2) + 3x$ when $x = 6$
- **67.** $5x - 7 + 2x$ when $x = -3$
- **68.** $6x - 3(2x + 4)$ when $x = 5$

SIMPLIFYING EXPRESSIONS

Simplify the expression. *(Review 1.2)*

- **69.** $3(7 + x) - 8x$
- **70.** $2(8 + x) + 2x - x$
- **71.** $4x - (6 - 3x)$
- **72.** $2x - 3(4x + 7)$
- **73.** $3(x + 9) + 2(4 - x)$
- **74.** $-4(x - 3) - 2(x + 7)$
- **75.** $2(x^2 + 2) - x + x^2 + 7$
- **76.** $2(x^2 - 81) - 3x^2$
- **77.** $x^2 - 5x + 3(x^2 + 7x)$
- **78.** $4x^2 - 2(x^2 - 3x) + 6x + 8$